Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomol Struct Dyn ; : 1-17, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087509

ABSTRACT

The lack of any effective cure for the infectious COVID-19 disease has created a sense of urgency and motivated the search for effective antiviral drugs. Abyssomicins are actinomyces-derived spirotetronates polyketides antibiotics known for their promising antibacterial, antitumor, and antiviral activities. In this study, computational approaches were used to investigate the binding mechanism and the inhibitory ability of 38 abyssomicins against the main protease (Mpro) and the spike protein receptor-binding domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The results identified abyssomicins C, J, W, atrop-O-benzyl abyssomicin C, and atrop-O-benzyl desmethyl abyssomicin C as the most potential inhibitors of Mpro and RBD with binding energy ranges between -8.1 and -9.9 kcal mol-1; and between -6.9 and -8.2 kcal mol-1, respectively. Further analyses of physicochemical properties and drug-likeness suggested that all selected active abyssomicins, with the exception of abyssomicin J, obeyed Lipinski's rule of five. The stability of protein-ligand complexes was confirmed by performing molecular dynamics simulation for 100 ns and evaluating parameters such as such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), total number of contacts, and secondary structure. Prime/MM-GBSA (Molecular Mechanics-General Born Surface Area) and principal component analysis (PCA) analyses also confirmed the stable nature of protein-ligand complexes. Overall, the results showed that the studied abyssomicins have significant interactions with the selected protein targets; therefore, they were deemed viable candidates for further in vitro and in vivo evaluation. Communicated by Ramaswamy H. Sarma.

2.
IUCrJ ; 7(Pt 6)2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-1546124

ABSTRACT

The emergence of the novel coronavirus SARS-CoV-2 has resulted in a worldwide pandemic not seen in generations. Creating treatments and vaccines to battle COVID-19, the disease caused by the virus, is of paramount importance in order to stop its spread and save lives. The viral main protease, 3CL Mpro, is indispensable for the replication of SARS-CoV-2 and is therefore an important target for the design of specific protease inhibitors. Detailed knowledge of the structure and function of 3CL Mpro is crucial to guide structure-aided and computational drug-design efforts. Here, the oxidation and reactivity of the cysteine residues of the protease are reported using room-temperature X-ray crystallography, revealing that the catalytic Cys145 can be trapped in the peroxysulfenic acid oxidation state at physiological pH, while the other surface cysteines remain reduced. Only Cys145 and Cys156 react with the alkylating agent N-ethylmaleimide. It is suggested that the zwitterionic Cys145-His45 catalytic dyad is the reactive species that initiates catalysis, rather than Cys145-to-His41 proton transfer via the general acid-base mechanism upon substrate binding. The structures also provide insight into the design of improved 3CL Mpro inhibitors.

3.
Brief Bioinform ; 22(2): 1225-1231, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352105

ABSTRACT

The lack of a vaccine or any effective treatment for the aggressive novel coronavirus disease (COVID-19) has created a sense of urgency for the discovery of effective drugs. Several repurposing pharmaceutical candidates have been reported or envisaged to inhibit the emerging infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their binding sites, binding affinities and inhibitory mechanisms are still unavailable. In this study, we use the ligand-protein docking program and molecular dynamic simulation to ab initio investigate the binding mechanism and inhibitory ability of seven clinically approved drugs (Chloroquine, Hydroxychloroquine, Remdesivir, Ritonavir, Beclabuvir, Indinavir and Favipiravir) and a recently designed α-ketoamide inhibitor (13b) at the molecular level. The results suggest that Chloroquine has the strongest binding affinity with 3CL hydrolase (Mpro) among clinically approved drugs, indicating its effective inhibitory ability for SARS-CoV-2. However, the newly designed inhibitor 13b shows potentially improved inhibition efficiency with larger binding energy compared with Chloroquine. We further calculate the important binding site residues at the active site and demonstrate that the MET 165 and HIE 163 contribute the most for 13b, while the MET 165 and GLN 189 for Chloroquine, based on residual energy decomposition analysis. The proposed work offers a higher research priority for 13b to treat the infection of SARS-CoV-2 and provides theoretical basis for further design of effective drug molecules with stronger inhibition.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Drug Design , Humans , Ligands , Molecular Docking Simulation , SARS-CoV-2/metabolism , Thermodynamics , Viral Proteins/metabolism
4.
Structure ; 29(8): 823-833.e5, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1275725

ABSTRACT

There is a clinical need for direct-acting antivirals targeting SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, to complement current therapeutic strategies. The main protease (Mpro) is an attractive target for antiviral therapy. However, the vast majority of protease inhibitors described thus far are peptidomimetic and bind to the active-site cysteine via a covalent adduct, which is generally pharmacokinetically unfavorable. We have reported the optimization of an existing FDA-approved chemical scaffold, perampanel, to bind to and inhibit Mpro noncovalently with IC50s in the low-nanomolar range and EC50s in the low-micromolar range. Here, we present nine crystal structures of Mpro bound to a series of perampanel analogs, providing detailed structural insights into their mechanism of action and structure-activity relationship. These insights further reveal strategies for pursuing rational inhibitor design efforts in the context of considerable active-site flexibility and potential resistance mechanisms.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Protease Inhibitors/chemistry , Pyridones/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Design , Molecular Dynamics Simulation , Molecular Structure , Nitriles , Protease Inhibitors/pharmacology , Protein Conformation , Protein Multimerization , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
5.
Front Mol Biosci ; 8: 640819, 2021.
Article in English | MEDLINE | ID: covidwho-1220125

ABSTRACT

COVID-19 has created a pandemic situation all over the world. It has spread in nearly every continent. Researchers all over the world are trying to produce an effective vaccine against this virus, however; no specific treatment for COVID-19 has been discovered -so far. The current work describes the inhibition study of the SARS-CoV-2 main proteinase or 3CL Mpro by natural and synthetic inhibitors, which include 2S albumin and flocculating protein from Moringa oleifera (M. oleifera) and Suramin. Molecular Docking study was carried out using the programs like AutoDock 4.0, HADDOCK2.4, patchdock, pardock, and firedock. The global binding energy of Suramin, 2S albumin, and flocculating proteins were -41.96, -9.12, and -14.78 kJ/mol, respectively. The docking analysis indicates that all three inhibitors bind at the junction of domains II and III. The catalytic function of 3CL Mpro is dependent on its dimeric form, and the flexibility of domain III is considered important for this dimerization. Our study showed that all three inhibitors reduce this flexibility and restrict their motion. The decrease in flexibility of domain III was further confirmed by analysis coming from Molecular dynamic simulation. The analysis results indicate that the temperature B-factor of the enzyme decreases tremendously when the inhibitors bind to it. This study will further explore the possibility of producing an effective treatment against COVID-19.

6.
Structure ; 28(12): 1313-1320.e3, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-997553

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 requires rapid development of specific therapeutics and vaccines. The main protease of SARS-CoV-2, 3CL Mpro, is an established drug target for the design of inhibitors to stop the virus replication. Repurposing existing clinical drugs can offer a faster route to treatments. Here, we report on the binding mode and inhibition properties of several inhibitors using room temperature X-ray crystallography and in vitro enzyme kinetics. The enzyme active-site cavity reveals a high degree of malleability, allowing aldehyde leupeptin and hepatitis C clinical protease inhibitors (telaprevir, narlaprevir, and boceprevir) to bind and inhibit SARS-CoV-2 3CL Mpro. Narlaprevir, boceprevir, and telaprevir are low-micromolar inhibitors, whereas the binding affinity of leupeptin is substantially weaker. Repurposing hepatitis C clinical drugs as COVID-19 treatments may be a useful option to pursue. The observed malleability of the enzyme active-site cavity should be considered for the successful design of specific protease inhibitors.


Subject(s)
Antiviral Agents , Betacoronavirus , COVID-19 , Coronavirus Infections , Antiviral Agents/pharmacology , Betacoronavirus/metabolism , Catalytic Domain , Coronavirus Infections/drug therapy , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Humans , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Temperature , Viral Nonstructural Proteins
7.
J Biol Chem ; 295(50): 17365-17373, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-872797

ABSTRACT

The main protease (3CL Mpro) from SARS-CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication. 3CL Mpro possesses an unusual catalytic dyad composed of Cys145 and His41 residues. A critical question in the field has been what the protonation states of the ionizable residues in the substrate-binding active-site cavity are; resolving this point would help understand the catalytic details of the enzyme and inform rational drug development against this pernicious virus. Here, we present the room-temperature neutron structure of 3CL Mpro, which allowed direct determination of hydrogen atom positions and, hence, protonation states in the protease. We observe that the catalytic site natively adopts a zwitterionic reactive form in which Cys145 is in the negatively charged thiolate state and His41 is doubly protonated and positively charged, instead of the neutral unreactive state usually envisaged. The neutron structure also identified the protonation states, and thus electrical charges, of all other amino acid residues and revealed intricate hydrogen-bonding networks in the active-site cavity and at the dimer interface. The fine atomic details present in this structure were made possible by the unique scattering properties of the neutron, which is an ideal probe for locating hydrogen positions and experimentally determining protonation states at near-physiological temperature. Our observations provide critical information for structure-assisted and computational drug design, allowing precise tailoring of inhibitors to the enzyme's electrostatic environment.


Subject(s)
Coronavirus 3C Proteases/chemistry , Models, Molecular , Neutrons , SARS-CoV-2/genetics , Catalytic Domain , Crystallography, X-Ray
8.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 10): 483-487, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-817571

ABSTRACT

The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins. At the heart of 3CL Mpro is an unusual catalytic dyad formed by the side chains of His41 and Cys145 and a coordinated water molecule. The catalytic mechanism by which the enzyme operates is still unknown, as crucial information on the protonation states within the active site is unclear. To experimentally determine the protonation states of the catalytic site and of the other residues in the substrate-binding cavity, and to visualize the hydrogen-bonding networks throughout the enzyme, room-temperature neutron and X-ray data were collected from a large H/D-exchanged crystal of ligand-free (apo) 3CL Mpro.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Pneumonia, Viral/virology , Viral Nonstructural Proteins/chemistry , Betacoronavirus/chemistry , Betacoronavirus/genetics , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Humans , Models, Molecular , Neutron Diffraction , Pandemics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2 , Temperature , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL